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a b s t r a c t

In this paper we present a new method of confidence interval identification for Takagi–
Sugeno fuzzy models in the case of the data with regionally changeable variance. The
method combines a fuzzy identification methodology with some ideas from applied statis-
tics. The idea is to find, on a finite set of measured data, the confidence interval defined by
the lower and upper bounds. The confidence interval which defines the band that contains
the measurement values with certain confidence. The method can be used when describing
a family of uncertain nonlinear functions or when the systems with uncertain physical
parameters are observed. In our example the proposed method is applied to model the
pH-titration curve.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The problem of the function approximation from a finite set of measured data using an optimality criterion has received a
great deal of attention in the scientific community. A lot of different approaches appeared to approximate functions from
data as: continuous piecewise linear (PWL) approach where it is possible to uniformly approximate any Lipschitz continuous
function defined on a compact domain [1], neural-network approach [2], the fuzzy model approach, which in Takagi–Sugeno
(TS) form, approximates the nonlinear system by smoothly interpolating affine local models [3]. Each local model contrib-
utes to the global model in a fuzzy subset of the space characterized by a membership function.

In this paper we look at the development of an interval function approximation methodology problem. This results in a
lower and upper fuzzy model or a fuzzy functions. It is well known that the structure and shape of if-part fuzzy sets have a
significantly effect on the fuzzy-model approximation of continuous functions [4]. Therefore, the proposed approach will ex-
hibit an extra degree of flexibility in the domain partition as well as in the use of different membership functions compared
to other function approximation technique.

The interval fuzzy model identification is a methodology for approximating the functions of a finite set of input and out-
put measurements that can also be used to compress information in the case of a nonlinear function family approximation to
obtain the confidence interval or band which contains the whole set or a certain amount, a certain enough big part of mea-
surements. The interval fuzzy model approach is shown in [5], where the linear programming approach is used to obtain the
fuzzy confidence interval, and in [6], where the confidence band is obtained using least-square optimization and a constant
variance is assumed in the whole problem domain. A frequently used approach of modeling systems with uncertainties is
called type-2 fuzzy modeling. This approach is described in Turksen [7], Liang and Mandel [8] and in Karnik and Mandel
[9]. The problem of measurement uncertainties is captured by the uncertainties in membership functions. The type-2 fuzzy
model gives the third dimension to the membership functions. This third dimension of membership function is called a pos-
sibility grade. The estimation of the fuzzy model parameters in this case requires a linear programming method. Our method,
in comparison with type-2 fuzzy model, offers easier interpretation and understanding of the confidence interval.
. All rights reserved.
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In our approach we are dealing with the problem where the variance of the data depends on the region of the input space
and is therefore different in each subspace. This is of great importance in many technological areas, e.g., the modeling of non-
linear time-invariant systems with uncertain physical parameters. In our example the methodology of confidence interval
modeling is used to define the nonlinear confidence band for pH-titration curve.

The paper is organized as follows: Section 2 provides the background to the fuzzy modeling; Section 3 describes the idea
of fuzzy confidence interval model identification; Section 4 introduces the confidence interval of local linear model; and Sec-
tion 5 presents an application to the pH-titration curve modeling.

2. Nonlinear model described in fuzzy form

A typical fuzzy model [3] is given in the form of rules
Please
j.apm.
Rj : if xp1 is A1;k1
and xp2 is A2;k2

and . . . and xpq is Aq;kq then y ¼ /jðxÞ j ¼ 1; . . . ;m; k1 ¼ 1; . . . ; f1;

k2 ¼ 1; . . . ; f2 . . . kq ¼ 1; . . . ; fq: ð1Þ
The q-element vector xT
p ¼ ½xp1; . . . ; xpq� denotes the input or variables in premise, and the variable y is the output of the

model. With each variable in premise xpi (i = 1, . . . ,q), fi fuzzy sets ðAi;1; . . . ;Ai;fi Þ are connected, and each fuzzy set
Ai;ki
ðki ¼ 1; . . . ; fiÞ is associated with a real-valued function lAi;ki

ðxpiÞ : R! ½0;1�, that produces the membership grade of
the variable xpi with respect to the fuzzy set Ai;ki

. To make the list of fuzzy rules complete, all possible variations of fuzzy
sets are given in Eq. (1), yielding the number of fuzzy rules m = f1 � f2 � � � � � fq. The variables xpi are not the only inputs
of the fuzzy system. Implicitly, the n-element vector xT = [x1, . . . ,xn] also represents an input to the system. It is usually re-
ferred to as the consequence vector. The functions /j(�) can be arbitrary smooth functions in general, although linear or affine
functions are normally used.

The system in Eq. (1) can be described in closed form if the intersection of the fuzzy sets is previously defined. The gen-
eralized form of the intersection is the so-called triangular norm (T-norm). In our case, the latter was chosen as an algebraic
product providing the output of the fuzzy system
y ¼
Pf1

k1¼1

Pf2
k2¼1 � � �

Pfq

kq¼1lA1;k1
ðxp1ÞlA2;k2

ðxp2Þ � � �lAq;kq
ðxpqÞ/jðxÞPf1

k1¼1

Pf2
k2¼1 � � �

Pfq

kq¼1lA1;k1
ðxp1ÞlA2;k2

ðxp2Þ � � �lAq;kq
ðxpqÞ

ð2Þ
It should be noted that there is a slight abuse of notation in Eq. (2), since j is not explicitly defined as a running index. From
Eq. (1) it is evident that each j corresponds to the specific variation of indexes ki, i = 1, . . . ,q.

To simplify Eq. (2), a partition of unity is considered where the functions bj(xp), defined by
bjðxpÞ ¼
lA1;k1

ðxp1ÞlA2;k2
ðxp2Þ � � �lAq;kq

ðxpqÞPf1
k1¼1

Pf2
k2¼1 � � �

Pfq
kq¼1lA1;k1

ðxp1ÞlA2;k2
ðxp2Þ � � �lAq;kq

ðxpqÞ
; j ¼ 1; . . . ;m; ð3Þ
give information about the fulfilment of the respective fuzzy rule in the normalized form. It is obvious that
Pm

j¼1bjðxpÞ ¼ 1
irrespective of xp as long as the denominator of bj(xp) is not equal to zero (this can be easily prevented by stretching the
membership functions over the whole potential area of xp). Combining Eqs. (2) and (3) and changing the summation over
ki to a summation over j we arrive at the following equation:
y ¼
Xm

j¼1

bjðxpÞ/jðxÞ: ð4Þ
From Eq. (4) it is evident that the output of a fuzzy system is a function of the premise vector xp (q-dimensional) and the
consequence vector x (n-dimensional). The dimension of the input space may be lower than (q + n) since it is very common to
have the same variables present in vectors xp and x. Vector z (d-dimensional) is composed of the elements of xp, and those of
x that are not present in xp.

Very often, the output value is defined as a linear combination of consequence states
/jðxÞ ¼ ½1xT �hj; j ¼ 1; . . . ;m; hT
j ¼ ½hj0; hj1; . . . ; hjn�T ; ð5Þ
by augmenting 1 to the vector x.
Eq. (4) consists of m local linear models and can be written as
y ¼
Xm

j¼1

wT
j hj; j ¼ 1; . . . ;m; ð6Þ
where wT
j ¼ bjðxpÞ½1xT �; j ¼ 1; . . . ;m.

If the matrix of the coefficients for the whole set of rules is written as HT = [h1, . . . ,hm], and the fuzzy regression matrix
wT ¼ wT
1; . . . ;wT

m

� �
; ð7Þ
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then Eq. (4) can be rewritten in the matrix form
Please
j.apm.
y ¼ wTH: ð8Þ
The fuzzy model in the form given in Eq. (8) is referred to as the affine Takagi–Sugeno model and can be used to
approximate any arbitrary function that maps the compact set C � Rd to R with any desired degree of accuracy [4,10,11].
The generality can be proven with the Stone-Weierstrass theorem which suggest that any continuous function can be
approximated by a fuzzy basis function expansion [2].

3. Fuzzy confidence interval model identification

In this section we discuss our approach to define the fuzzy confidence interval. We assume a set of premise vectors
Xp = {xp1,xp2, . . . ,xpN} and a set of antecedent (or consequence) vectors x = {x1,x2, . . . ,xN}, from which a set Z = {z1,z2, . . . ,zN}
can be constructed that represents the input measurement data, collected from the compact set S � Rd. A set of correspond-
ing outputs is also defined as Y = {y1,y2 , . . . ,yN}. The measurements satisfy the nonlinear equation of the system
yi ¼ gðziÞ; i ¼ 1; . . . ;N: ð9Þ
According to the Stone–Weierstrass theorem, for any given real continuous function g on a compact set U � Rd and arbi-
trary � > 0, there exist a fuzzy system f such that
max
zi2Z
jgðziÞ � f ðziÞj < �; 8i: ð10Þ
This implies the approximation of any given real continuous function with a fuzzy function from class Fd defined in Eq.
(8). However, it has to be pointed out that lower values of � imply higher values of m that satisfy Eq. (10). The answer lies in
the proper arrangement of membership functions. This is a well-known problem in fuzzy systems. It can be overcome with a
cluster analysis [12,13] or other approaches. The details will not be discussed in this paper.

Taking into account Eqs. (8)–(10) the set of data samples can be written as follows:
yi ¼ wTðziÞHþ ei; i ¼ 1; . . . ;N; ð11Þ
where stands ei, i = 1, . . . ,N, for the noise of normal distribution, with zero mean value and variance which is regionally
dependant and is written as e ¼Nð0;r2ðxpÞ where e = [e1, . . . ,eN]T.

The error between the measured values and the fuzzy function outputs can be defined as
ei ¼ yi � wTðziÞH; i ¼ 1; . . . ;N: ð12Þ
By having the membership functions defined, the structure of the model is known and only the fuzzy model parameters
have to be defined. The parameters of H are calculated separately for each local model. This means that we split Eq. (12) into
m equations of the form
ei;j ¼ yi;j � wT
i;jhj; i ¼ 1; . . . ;N; j ¼ 1; . . . ;m ð13Þ
where ei;j ¼ bi;jei; yi;j ¼ bi;jyi; wT
i;j ¼ bi;jw

TðziÞ and where bi,j = bj(xpi), i = 1, . . . ,N.
In matrix form the equation is written as follows
ej ¼ yj �WT
j hj; j ¼ 1; . . . ;m; ð14Þ
where ej = [e1,j, . . . ,eN,j]T, yj = [y1,j, . . . ,yN,j]T and Wj = [w1,j, . . . ,wN,j]T.
The vector of the estimated local model parameters is the minimizing argument which can be expressed as
ĥj ¼ arg min VjðhjÞ; j ¼ 1; . . . ;m; ð15Þ
where Vj reads as Vj ¼ eT
j ej. The idea of an approximation can be interpreted as the most representative local fuzzy function

to describe the local domain of outputs yj as a function of inputs z. The estimation of the local fuzzy model parameters is
given by the minimum least-square optimization as follows:
ĥj ¼ WjW
T
j

� ��1
Wjyj ð16Þ
and the estimated output of the jth local fuzzy model is therefore written as ŷj ¼ wT
j ĥj.

In particular case the estimated parameters of the fuzzy model, by taking into account Eq. (14), become ĥj ¼ hj þ ~hj where
~hj ¼ ðWjW
T
j Þ
�1Wjej: ð17Þ
The expected bias of the local model parameters is then described as follows:
Efĥjg ¼ hj þ E WjW
T
j

� ��1
Wjej

� �
; j ¼ 1; . . . ;m: ð18Þ
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The right term in Eq. (18) equals zero, because of uncorrelated regression matrix Wj and vector ej and the zero mean value
E{ej} = 0. This can be explained by taking into account the statistical property of the noise E{e} = 0, what implies that also the
noise of the jth local linear model, i.e., the weighted mean value E{ej} = 0 equals zero, when assuming enough big amount of
measurements inside one fuzzy partitioning. This means that the estimation of the model parameters is unbiased. The
weighted mean value is calculated as follows:
Please
j.apm.
�ej ¼ Efejg ¼
1
m
XN

i¼1

bi;jei; m ¼
XN

i¼1

bi;j; j ¼ 1; . . . ;m: ð19Þ
The expected covariance of the estimated parameters is calculated in the following way:
covðhj � ĥjÞ ¼ E ~hj
~hT

j

n o
; ð20Þ
taking into account that Ef~hjg ¼ 0. Using Eq. (17), the covariance matrix of model parameters is written as follows
covðhj � ĥjÞ ¼ E WjW
T
j

� ��1
WjejeT

j W
T
j WjW

T
j

� ��1
� �

¼ WjW
T
j

� ��1
WjE ejeT

j

n o
WT

j WjW
T
j

� ��1
ð21Þ
and by taking into account the following notation E ejeT
j

n o
¼ r̂2

j I the covariance matrix is written as follows:
covðhj � ĥjÞ ¼ r̂2
j WjW

T
j

� ��1
; ð22Þ
where r̂2
j stands for variance of ej
r̂2
j ¼

1
l� ðnþ 1Þ

XN

i¼1

b2
i;jðei � �ejÞ2; l ¼

XN

i¼1

b2
i;j; j ¼ 1; . . . ;m ð23Þ
and n + 1 stands for the number of the estimated parameters of the fuzzy model.
The expected covariance of the residuals between the observed data and the model output is given as follows
covðyj � ŷjÞ ¼ Efðyj � ŷj � Efyj � ŷjgÞðyj � ŷj � Efyj � ŷjgÞTg: ð24Þ
Taking into account that E{ej} = 0 the expected value of the residue between measured output and estimated output becomes
Efyj � ŷjg ¼ 0.

The covariance matrix of the residuals, in Eq. (24), can be written as:
covðyj � ŷjÞ ¼ Efðej �WT
j
~hjÞðej �WT

j
~hjÞTg ð25Þ
and by taking into account Eq. (17), it is written as follows
covðyj � ŷjÞ ¼ r̂2
j I � r̂2

j W
T
j ðWjW

T
j Þ
�1Wj: ð26Þ
4. Confidence interval of local linear model

Let us define a confidence interval for a new set of data, given by the same function as in the case of identification, g 2 G.
The corresponding set of measured output values Y � ¼ y�1; . . . ; y�M

� 	
over the set of inputs Z⁄, i.e., y�i ¼ g z�i


 �
; g 2 G; z�i 2

S; i ¼ 1; . . . ;M is called the validation data set.
The idea of confidence interval fuzzy modeling is to find a lower fuzzy function f and an upper fuzzy function �f satisfying
f z�i

 �

6 g z�i

 �

6
�f z�i

 �

; 8z�i 2 S: ð27Þ
In this sense, a function from class G can be found with a certain confidence in the band defined by the upper and the
lower fuzzy function. The main request in defining the band is that it is as narrow as possible and should contain a certain
percentage of data. The problem has been treated in the literature using the piecewise linear function approximation [1]. Our
approach using the fuzzy function approximation can be viewed as a generalization of the piecewise linear approach and
gives a better approximation, or at least a much narrower approximation band.

The measured output values of the jth local linear model are now defined as
y�j ¼ W�j
T
hj þ e�j ; ð28Þ
where W�j
T stands for the regression matrix of the jth local linear model and y�j ¼ y�1; . . . ; y�M

� �T . The model output of the jth
local linear model is in the case of validation data set defined as follows:
ŷ�j ¼ W�j
T
ĥj: ð29Þ
cite this article in press as: I. Škrjanc, Fuzzy confidence interval for pH titration curve, Appl. Math. Modell. (2011), doi:10.1016/
2011.02.033

http://dx.doi.org/10.1016/j.apm.2011.02.033
http://dx.doi.org/10.1016/j.apm.2011.02.033


I. Škrjanc / Applied Mathematical Modelling xxx (2011) xxx–xxx 5
To calculate the confidence interval in the case of validation set, we have to calculate the expected covariance of the resid-
ual between the model output and the new set of data in each local domain
Please
j.apm.
cov y�j � ŷ�j
� �

¼ E y�j � ŷ�j � E y�j � ŷ�j
n o� �

y�j � ŷ�j � E y�j � ŷ�j
n o� �T

� �
: ð30Þ
Taking into account the same statistical properties of the noise for the data in validation data set Efe�j g ¼ 0
� �

and for the
identification set (E{ej} = 0), the expected value of the error between measured output and estimated output becomes

E y�j � ŷ�j
n o

¼ 0.

The covariance matrix in Eq. (30) can be rewritten as:
cov y�j � ŷ�j
� �

¼ E e�j �W�j
T ~hj

� �
e�j �W�j

T~hj

� �T
� �

ð31Þ
and further on as follows:
cov y�j � ŷ�j
� �

¼ E e�j e�j
T

n o
� E W�j

T ~hje�j
T

n o
� E e�j ~hT

j W
�
j

n o
þ E W�j

T~hj
~hT

j W
�
j

n o
: ð32Þ
Taking into account Eq. (17) and assuming that both noise signals have identical statistical properties, E ejeT
j

n o
¼

E e�j e�j
T

n o
¼ r̂2

j , and are uncorrelated E eje�j
T

n o
¼ E e�j eT

j

n o
¼ 0, Eq. (32) is written as follows:
cov y�j � ŷ�j
� �

¼ r̂2
j I þ r̂2

j W
�
j

T WjW
T
j

� ��1
W�j ð33Þ
The lower and the upper confidence interval of the local linear model are therefore defined as
f jðz�i Þ ¼ w�i;j
T
hj � ta;M�nr̂j 1þ w�i;j

T WjW
T
j

� ��1
w�i;j

� 
1
2

; i ¼ 1; . . . ;M ð34Þ
and
�f j z�i

 �

¼ w�i;j
T
hj þ ta;M�nr̂j 1þ w�i;j

T WjW
T
j

� ��1
w�i;j

� 
1
2

; i ¼ 1; . . . ;M; ð35Þ
where ta,M�n stands for percentile of t-distribution for 100(1 � 2a) percentage confidence interval with M � n degrees of
freedom.

The interval fuzzy modeling can be used efficiently in the case of fault detection where the data set of normal operating
systems is modeled by interval fuzzy model to obtain the band of normal functioning. During operations this band is calcu-
lated on-line and it is checked if a measurement corresponds to the normal functioning band or not. If the measurement vio-
lates the tolerance band, one can assume that a malfunction might have occurred. The proposed model can also be used for
the case of robust control design as described in [14].

5. Fuzzy confidence interval model of titration curve

The proposed approach is used to define the fuzzy confidence interval for titration curve of pH neutralization process. A
mathematical model of a pH neutralization process was adopted from [15]. The example consists of a neutralization reaction
between a strong acid (HA) and a strong base (BOH) in the presence of a buffer agent (BX). The neutralization takes place in a
continuous stirred tank reactor (CSTR) with a constant volume V. It is a well-known fact that the pH processes are extremely
difficult to deal with due to their highly nonlinear behavior with respect to different titration curves.

Fig. 1 shows a scheme of the continuous pH neutralization process. An acidic solution with a time-varying volumetric
flow qA(t) of a composition x1i(t) is neutralized using an alkaline solution with volumetric flow qB(t) of known composition
consisting base x2i and buffer agent x3i. Due to the high reaction rates of the acid–base neutralization, chemical equilibrium
conditions are instantaneously achieved. Moreover, under the assumption that the acid, base and buffer are strong enough,
total dissociation of the three compounds takes place. The process-dynamics model can be obtained by considering the elec-
troneutrality condition (which is always preserved) and through mass balances of equivalent chemical species (known as
chemical invariants). For this specific case, the dynamic behavior of the process can be described considering the state vari-
ables: x1 = [A�]; x2 = [B+]; x3 = [X�].

Therefore, the mathematical model of the process can be written in the following way:
_x1 ¼
1
h
� ðx1i � x1Þ �

1
V
� x1 � u;

_x2 ¼ �
1
h
� x2 þ

1
V
� ðx2i � x2Þu;

_x3 ¼ �
1
h
� x3 þ

1
V
� ðx3i � x3Þu;

ð36Þ
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Please
j.apm.
gðx; nÞ ¼ nþ x2 þ x3 � x1 �
Kw

n
� x3

1þ Kxn
Kw

¼ 0; ð37Þ
where n = 10�pH, h = V/qA, and u = qA/qB. Kw and Kx are the dissociation constants of the buffer and water, respectively. The
parameters of the system represented by Eqs. (36) and (37) are x2i = 0.0020 mol NaOH/L, x3i = 0.0025 mol NaHCO3/L,
Kx = 10�7 mol/L, Kw = 10�14 mol2/L2 and V = 2.5 L. Eq. (37) takes the standard form of the widely used implicit expression that
connects pH, defined as pH = �logn and denoted as y in our example, with the states of the process, and it can also be rewrit-
ten to a third-order polynomial form:
gðx; nÞ ¼ n3 þ ðKw=Kx þ x2 þ x3 � x1Þn2 þ ðx2 � x1 þ KxÞn� K2
w=Kx ¼ 0: ð38Þ
For the neutralization reactor, due to the instantaneous character of the acid–base reactions, where equilibrium conditions
can be justified, it seems that the only dynamics involved is associated with the mixing phenomena. This implies that the
concentrations of different chemical species that take part in the reaction vary from zero to a limit value. The goal of our
approach is to model the titration curve of the pH process with a fuzzy confidence interval. The titration curve is defined
with the relation between the measured input concentration us(k) and corresponding pH value denoted as ys(k) in stea-
dy-state. In Fig. 2 the measured samples of the us and ys are shown which can be used to identify the titration curve. The
process input was assumed to be bounded by the interval 0 6 u(k) 6 1. The input domain was divided into m = 7 subsets
of gauss shape using fuzzy Gustafson–Kessel clustering algorithm as shown in Fig. 3. The obtained parameters of the fuzzy
model are the following:
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

11

12

 us

 y
s

Fig. 2. The data samples of us and ys.
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I. Škrjanc / Applied Mathematical Modelling xxx (2011) xxx–xxx 7

Please
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bHT ¼
3:0494 2:6517 �1:6938 5:3845 �0:8304 6:8539 9:5597
4:0357 6:3593 26:4716 5:1181 16:7560 4:9920 1:3354

� �
: ð39Þ
The corresponding standard deviations r̂j; j ¼ 1; . . . ;m of the data are given in vector r̂ as follows:
r̂T ¼ 0:1454 0:1329 0:4502 0:1450 0:1835 0:1633 0:1495½ �: ð40Þ
The fuzzy confidence interval is given as a 100(1 � 2a)%) confidence interval, where a stands for the confidence proba-
bility and is in our example equal to 0.025. This means that we have a 95% confidence interval and a 95% of all samples be-
long to the confidence interval. The percentile of t-distribution ta,M�n, with the degree of freedom M � n = 190, is equal to
ta,M�n = 1.96. The lower and the upper bound of the confidence interval and the original data are given in Fig. 4. The percen-
tile can be viewed as the parameter of the method, because it defines the percentage of confidence for the fuzzy confidence
interval for a given data set. The percentile is constant for the whole data set.
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Fig. 4. The fuzzy confidence interval of pH titration curve.
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6. Conclusion

A new method of fuzzy confidence interval identification has been proposed that is applicable when a finite set of mea-
surement data is available. The idea is extended to the modeling of the optimal lower and upper bound functions that define
the band that contains a certain amount, (1 � 2a), of the measurement samples. This results in the lower and upper fuzzy
confidence bar what can be of great importance in the case of families of functions where the parameters of the observed
system vary in certain intervals. Our approach can also be used in data mining to compress the information or in robust sys-
tem identification. In the example the proposed method is applied to define a fuzzy confidence for highly nonlinear pH-titra-
tion curve.
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